Research on the lingonberry has been carried out both in Finland and in other countries. Lingonberry's nutritional content, health effects, ecological and physiological properties, berry crops as well as different factors affecting berry yields  have been investigated in the following studies:

Beaulieu, L-P., Harris, C.S., Saleem, A., Cuerrier, A., Haddad, P.S., Martineau, L.C., Bennett, S.A. & Arnason, J.T. 2010. Inhibitory effect of the cree traditional medicine wiishichimanaanh (Vaccinium vitis-idaea) on advanced glycation endproduct formation: identification of active principles. Phytotherapy Research 24: 741-747.

Bhusal, A. 2016. A comparative study of the antioxidant potential and metabolic profiling of lingonberry (Vaccinium vitis idaea) from Northern Manitoba and Newfoundland. University of Manitoba. Master thesis.

Cieslak, A., Zmora, P., Pers-Kamczyc, E. & Szumacher-Strabel, M. 2012. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Animal Feed Science and Technology 176: 102–106.

Dróżdż, P., Šėžienė, V. & Pyrzynska, K. 2017. Phytochemical Properties and Antioxidant Activities of Extracts from Wild Blueberries and Lingonberries. Plant Foods for Human Nutrition 72: 360–364.

Ehala, S., Vaher, M. & Kaljurand, M. 2005. Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity. J. Agric. Food Chem. 53: 6484–6490.

Eid, H.M., Martineau, L.C., Saleem, A., Muhammad, A., Vallerand, D., Benhaddou-Andaloussi, A., Nistor, L., Afshar, A., Arnason, J.T. & Haddad, P.S. 2010. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Molecular Nutrition & Food Research 54(7): 991–1003.

Eid, H.M., Ouchfoun, M., Brault, A, Vallerand, D., Musallam, L., Arnason, J.T. & Haddad, P.S. 2014. Lingonberry (Vaccinium vitis-idaea L.) Exhibits Antidiabetic Activities in a Mouse Model of Diet-Induced Obesity. Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 645812.

Ek, S., Kartimo, H., Mattila, S. & Tolonen, A. 2006. Characterization of Phenolic Compounds from Lingonberry (Vaccinium vitis-idaea). J. Agric. Food Chem. 54: 9834−9842.

Erlund, I., Marniemi, J., Hakala, P., Alfthan, G., Meririnne, E. & Aro, A. 2003. Consumption of black currants, lingonberries and bilberries increases serum quercetin concentrations. Eur. J. Clin. Nutr. 57: 37−42.

Hajazimi, E., Landberg, R. & Zamaratskaia, G. 2016. Simultaneous determination of flavonols and phenolic acids by HPLC-CoulArray in berries common in the Nordic diet. LWT - Food Science and Technology 74: 128-134.

Heinonen, M. 2007. Antioxidant activity and antimicrobial effect of berry phenolics – a Finnish perspective. Mol. Nutr. Food Res. 51: 684-691.

Hellström, J.K., Törrönen, R. & Mattila, P. 2009. Proanthocyanidins in common food products of plant origin. J. Agric. Food Chem. 57: 7899-7906.

Heyman, L., Axling, U., Blanco, N., Sterner, O., Holm, C. & Berger, K. 2014. Evaluation of Beneficial Metabolic Effects of Berries in High-Fat Fed C57BL/6J Mice. Journal of Nutrition and Metabolism, vol. 2014.

Ho, K.Y., Huang, J.S., Tsai, C.C., Lin, T.C., Hsu, Y.F. & Lin, C.C. 1999. Antioxidant Activity of Tannin Components from Vaccinium vitis-idaea L. Journal of Pharmacy and Pharmacology 51: 1075–1078.

Ho, K.Y., Tsai, C.C., Huang, J.S., Chen, C.P., Lin, T.C. & Lin, C.C. 2001. Antimicrobial activity of tannin components from Vaccinium vitis-idaea L. Journal of Pharmacy and Pharmacology 53: 187–191.

Hokkanen, J., Mattila, S., Jaakola, L., Pirttilä, A.M. & Tolonen, A. 2009. Identification of Phenolic Compounds from Lingonberry (Vaccinium vitis-idaea L.), Bilberry (Vaccinium myrtillus L.) and Hybrid Bilberry (Vaccinium x intermedium Ruthe L.) Leaves. J. Agric. Food Chem. 57: 9437–9447.

Hossain, M.Z., Shea, E., Daneshtalab, M. & Weber, J.T. 2016. Chemical Analysis of Extracts from Newfoundland Berries and Potential Neuroprotective Effects. Antioxidants 5(4), 36.

Häkkinen, S.H., Kärenlampi, S.O., Heinonen, M., Mykkänen, H.M. & Törrönen, R. 1999. Content of the Flavonols Quercetin, Myricetin, and Kaempferol in 25 Edible Berries. J. Agric. Food Chem. 47: 2274-2279.

Jungfer, E., Zimmermann, B.F., Ruttkat, A. & Galensa, R. 2012. Comparing Procyanidins in Selected Vaccinium Species by UHPLC-MS2 with Regard to Authenticity and Health Effects. J. Agric. Food Chem. 60(38): 9688–9696.

Kallio, J., Jaakkola, M., Mäki, M., Kilpeläinen, P. & Virtanen, V. 2012. Vitamin C inhibits Staphylococcus aureus growth and enhances the inhibitory effect of quercetin on growth of Escherichia coli in vitro. Planta Medica 78(17): 1824-1830. DOI: 10.1055/s-0032-1315388

Kilpeläinen, H., Miina, J., Store, R., Salo, K. & Kurttila, M. 2016. Evaluation of bilberry and cowberry yield models by comparing model predictions with field measurements from North Karelia, Finland. Forest Ecology and Management 363: 120-129.

Kivimäki, A.S., Siltari, A., Ehlers, P.I., Korpela, R. & Vapaatalo, H. 2013. Lingonberry juice lowers blood pressure of spontaneously hypertensive rats (SHR). Journal of Functional Foods Volume 5(3): 1432–1440.

Kivimäki, A. 2019. Lingonberry juice, blood pressure, vascular function and inflammatory markers in experimental hypertension. Doctoral dissertation. University of Helsinki, Faculty of Medicine.

Koponen, J., Kallio, H., Yang, B. & Tahvonen, R. 2001. Plant sterols in Finnish blueberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis idaea L.) seed oils. In: Pfannhauser, W., Fenwick, G.R. & Khokhar, S. (eds.). Biologically-active Phytochemicals in Food. Analysis, Metabolism, Bioavailability and Function. Royal Society of Chemistry. p. 233–236.

Kowalska, K. 2021. Lingonberry (Vaccinium vitis-idaea L.) Fruit as a Source of Bioactive Compounds with Health-Promoting Effects—A Review. Int. J. Mol. Sci. 22(10), 5126.

Kumar, B.J. & Joghee, N.M. 2013, Resveratrol supplementation in patients with type 2 diabetes mellitus: A prospective, open label, randomized controlled trial. Int. Res. J. Pharm. 4(8): 245-249. DOI:10.7897/2230-8407.04849

Kylli, P., Nohynek, L., Puupponen-Pimiä, R., Westerlund-Wikström, B., Leppänen, T., Welling, J., Moilanen, E. & Heinonen, M. 2011. Lingonberry (Vaccinium vitis-idaea) and European Cranberry (Vaccinium microcarpon) Proanthocyanidins: Isolation, Identification, and Bioactivities. J. Agric. Food Chem. 59: 3373–3384.

Kähkönen, M.P., Hopia, A.I. & Heinonen, M. 2001. Berry Phenolics and Their Antioxidant Activity. J. Agric. Food Chem. 49: 4076-4082.

Lee, J. & Finn, C.E. 2012. Lingonberry (Vaccinium vitis-idaea L.) grown in the Pacific Northwest of North America: Anthocyanin and free amino acid composition. Journal of Functional Foods 4: 213-218.

Lehtonen, H-M., Lehtinen, O., Suomela, J-P., Viitanen, M. & Kallio, H. 2010. Flavonol glycosides of sea buckthorn (Hippophaë rhamnoides ssp. sinensis) and lingonberry (Vaccinium vitis-idaea) are bioavailable in humans and monoglucuronidated for excretion. J. Agric. Food Chem. 58(1): 620-627.

Lehtonen, H-M., Suomela, J-P., Tahvonen, R., Vaarno, J., Venojärvi, M., Viikari, J. & Kallio, H. 2010. Berry meals and risk factors associated with metabolic syndrome. European Journal of Clinical Nutrition 64: 614–621.

Liu, J., Hefni, M.E. & Witthöft, C.M. 2020. Characterization of Flavonoid Compounds in Common Swedish Berry Species. Foods 9(3), 358.

Nuortila, C. 2007. Little variation in fruit/flower ratio between years in two ericaceous dwarf shrubs, Vaccinium myrtillus and Vaccinium vitis-idaea. Manuscript. In: Nuortila, C. 2007. Constraints on sexual reproduction and seed set in Vaccinium and Campanula. Academic dissertation. Acta Universitatis Ouluensis A 489.

Nurmi, T., Mursu, J., Heinonen, M., Nurmi, A., Hiltunen, R. & Voutilainen, S. 2009. Metabolism of Berry Anthocyanins to Phenolic Acids in Humans J. Agric. Food Chem. 57: 2274–2281.

Nurmi, T., Mursu, J., Peñalvo, J.L., Poulsen, H.E. & Voutilainen, S. 2010. Dietary intake and urinary excretion of lignans in Finnish men. British Journal of Nutrition 103: 677-685.

Onali, T., Kivimäki, A., Mauramo, M., Salo, T. & Korpela, R. 2021. Anticancer Effects of Lingonberry and Bilberry on Digestive Tract Cancers. Antioxidants 2021, 10, 850.

Pärnänen, P. 2020. Combining biochemistry to dentistry: from in vitro Candida glabrata observations to an in vivo clinical lingonberry application. Doctoral dissertation. University of Helsinki.

Pärnänen, P., Lähteenmäki, H., Tervahartiala, T., Räisänen, I.T. & Sorsa, T. 2021. Lingonberries—General and Oral Effects on the Microbiome and Inflammation. Nutrients 13(11), 3738.

Pärnänen, P., Lomu, S., Räisänen, I.T., Tervahartiala, T. & Sorsa, T. 2023. Antimicrobial and Anti-Inflammatory Oral Effects of Fermented Lingonberry Juice – A One-Year Prospective Human Intervention Study. European Journal of Dentistry 2023 Jan 4. DOI: 10.1055/s-0042-1759619

Riihinen, K., Ryynänen, A., Toivanen, M., Könönen, E., Törrönen, R. & Tikkanen-Kaukanen, C. 2011. Antiaggregation potential of berry fractions against pairs of Streptococcus mutans with Fusobacterium nucleatum or Actinomyces naeslundii. Phytotherapy Research 25: 81-87.

Rimando, A.M., Kalt, W., Magee, J.B., Dewey, J. & Ballington, J.R. 2004. Resveratrol, Pterostilbene, and Piceatannol in Vaccinium Berries. J. Agric. Food Chem. 52: 4713-4719.

Rischer, H., Nohynek, L., Puupponen-Pimiä, R., Aguiar, J., Rocchetti, G., Lucini, L., Câmara, J.S., Cruz, T.M., Marques, G.B. & Granato, D. 2022. Plant cell cultures of Nordic berry species: Phenolic and carotenoid profiling and biological assessments. Food Chemistry 366, 130571.

Rodríguez, A. & Kouki, J. 2015. Emulating natural disturbance in forest management enhances pollination services for dominant Vaccinium shrubs in boreal pine-dominated forests. Forest Ecology and Management 350: 1-12.

Ryyti, R., Hämäläinen, M., Peltola, R. & Moilanen, E. 2020. Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS ONE 15(5): e0232605.

Ryyti, R., Pemmari, A., Peltola, R., Hämäläinen, M. & Moilanen, E. 2021. Effects of Lingonberry (Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 13(11), 3693.

Shikov, A.N., Pozharitskaya, O.N., Makarov, V.G., Wagner, H., Verpoorte, R. & Heinrich, M. 2014. Medicinal Plants of the Russian Pharmacopoeia; their history and applications. Journal of Ethnopharmacology 154: 481–536.

Su, Z. 2012. Anthocyanins and Flavonoids of Vaccinium L.  Faculty Publications. Paper 3.

Toivanen, M., Ryynänen, A., Huttunen, S., Duricova, J., Riihinen, K., Törrönen, R., Lapinjoki, S. & Tikkanen-Kaukanen, C. 2009. Binding of Neisseria meningitidis Pili to Berry Polyphenolic Fractions. J. Agric. Food Chem. 57: 3120–3127.

Toivanen, M., Huttunen, S., Lapinjoki, S. & Tikkanen-Kaukanen, C. 2011. Inhibition of adhesion of Neisseria meningitidis to human epithelial cells by berry juice polyphenolic fractions. Phytotherapy Research 25: 828-832.

Tundis, R., Tenuta, M.C., Loizzo, M.R., Bonesi, M., Finetti, F., Trabalzini, L. & Deguin, B. 2021. Vaccinium Species (Ericaceae): From Chemical Composition to Bio-Functional Activities. Appl. Sci. 11(12), 5655.

Turtiainen, M., Salo, K & Saastamoinen, O. 2007. Mustikan ja puolukan marjasatojen valtakunnalliset ja alueelliset kokonaisestimaatit Suomen suometsissä. (National and regional estimates of blueberry (Vaccinium myrtillus L.) and lingonberry (V. vitis-idaea L.) yields on peatlands in Finland.) Suo 58(3-4): 87-98.

Turtiainen, M. 2015. Modelling bilberry and cowberry yields in Finland: different approaches to develop models for forest planning calculations. Dissertationes Forestales 185.

Turtiainen, M. 2021. Mustikka- ja puolukkasatojen vuotuisen vaihtelun ja talteenoton tarkastelua valtakunnallisesti ja Itä-Suomen alueella. (Examining annual variation and utilization of bilberry and cowberry yields nationally and in Eastern Finland.) Alue ja Ympäristö, 50(1), 4-27.

Törrönen, R., Kolehmainen, M., Sarkkinen, E., Mykkänen, H. & Niskanen, L. 2012. Postprandial glucose, insulin, and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women. Am. J. Clin. Nutr. 96: 527-533.

Vilkickyte, G., Raudone, L. & Petrikaite, V. 2020. Phenolic Fractions from Vaccinium vitis-idaea L. and Their Antioxidant and Anticancer Activities Assessment. Antioxidants 9(12), 1261.

Wang, S.Y., Feng, R., Bowman, L., Penhallegon, R., Ding, M. & Lu, Y. 2005. Antioxidant Activity in Lingonberries (Vaccinium vitis-idaea L.) and Its Inhibitory Effect on Activator Protein-1, Nuclear Factor-κB, and Mitogen-Activated Protein Kinases Activation. J. Agric. Food Chem. 53(8): 3156–3166.

Wojnicz, D., Kucharska, A.Z., Sokół-Łętowska, A., Kicia, M. & Tichaczek-Goska, D. 2012. Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urological Research 40: 683-697.

See also the following useful websites:

European Commission 2022. Nutrition and Health Claims.

Finnish Food Authority 2022. Health claims.

Finnish Institute for Health and Welfare 2022. Fineli – Finnish Food Composition Database. Lingonberry, cowberry, Vaccinium vitis-idaea.